XceptionImageConverter
类keras_hub.layers.XceptionImageConverter(
image_size=None,
scale=None,
offset=None,
crop_to_aspect_ratio=True,
pad_to_aspect_ratio=False,
interpolation="bilinear",
antialias=False,
bounding_box_format="yxyx",
data_format=None,
**kwargs
)
将原始图像预处理为适合模型的输入。
该类将原始图像转换为适合模型的输入。此转换按以下步骤进行:
该层将接收一个 channels last 或 channels first 格式的原始图像张量作为输入,并输出一个用于建模的预处理图像输入。该张量可以是批处理的(秩为 4),也可以是非批处理的(秩为 3)。
此层可与 from_preset()
构造函数一起使用,以加载一个层,该层将为特定的预训练模型重新缩放和调整图像大小。以这种方式使用该层允许编写预处理代码,该代码在模型检查点之间切换时无需更新。
参数
None
。应用于输入的比例。如果 scale
是单个浮点数,则整个输入将乘以 scale
。如果 scale
是元组,则假定它包含与输入图像的每个通道相乘的每通道比例值。如果 scale
是 None
,则不应用缩放。None
。应用于输入的偏移量。如果 offset
是单个浮点数,则整个输入将与 offset
相加。如果 offset
是元组,则假定它包含与输入图像的每个通道相加的每通道偏移值。如果 offset
是 None
,则不应用缩放。True
,则调整图像大小而不进行纵横比失真。当原始纵横比与目标纵横比不同时,输出图像将被裁剪,以返回图像中最大可能的窗口(大小为 (height, width)
)以匹配目标纵横比。默认情况下(crop_to_aspect_ratio=False
),可能不会保留纵横比。"xyxy"
、"rel_xyxy"
、"xywh"
、"center_xywh"
、"yxyx"
、"rel_yxyx"
之一。指定将与图像一起调整为 image_size
的边界框的格式。要将边界框传递给此层,请在调用该层时传递一个包含键 "images"
和 "bounding_boxes"
的字典。"channels_last"
或 "channels_first"
。输入中维度的顺序。"channels_last"
对应于形状为 (batch, height, width, channels)
的输入,而 "channels_first"
对应于形状为 (batch, channels, height, width)
的输入。它默认为 Keras 配置文件(位于 ~/.keras/keras.json
)中找到的 image_data_format
值。如果从未设置,则为 "channels_last"
。示例
# Resize raw images and scale them to [0, 1].
converter = keras_hub.layers.ImageConverter(
image_size=(128, 128),
scale=1. / 255,
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
# Resize images to the specific size needed for a PaliGemma preset.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
from_preset
方法XceptionImageConverter.from_preset(preset, **kwargs)
从模型预设实例化一个 `keras_hub.layers.ImageConverter`。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
您可以运行 `cls.presets.keys()` 来列出该类上所有可用的内置预设。
参数
示例
batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
# Resize images for `"pali_gemma_3b_224"`.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(batch) # # Output shape (2, 224, 224, 3)
# Resize images for `"pali_gemma_3b_448"` without cropping.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_448",
crop_to_aspect_ratio=False,
)
converter(batch) # # Output shape (2, 448, 448, 3)
预设 | 参数 | 描述 |
---|---|---|
xception_41_imagenet | 20.86M | 41 层 Xception 模型,在 ImageNet 1k 上预训练。 |