SigLIPImageConverter
类keras_hub.layers.SigLIPImageConverter(
image_size=None,
scale=None,
offset=None,
crop_to_aspect_ratio=True,
pad_to_aspect_ratio=False,
interpolation="bilinear",
antialias=False,
bounding_box_format="yxyx",
data_format=None,
**kwargs
)
将原始图像预处理为适合模型的输入。
该类将原始图像转换为适合模型的输入。此转换按以下步骤进行:
该层将接收一个 channels last 或 channels first 格式的原始图像张量作为输入,并输出一个用于建模的预处理图像输入。该张量可以是批处理的(秩为 4),也可以是非批处理的(秩为 3)。
此层可与 from_preset()
构造函数配合使用,以加载一个层,该层将为特定的预训练模型重新缩放和调整图像大小。以这种方式使用该层允许编写预处理代码,该代码在模型检查点之间切换时无需更新。
参数
None
。应用于输入的比例。如果 scale
是单个浮点数,则整个输入将乘以 scale
。如果 scale
是一个元组,则假定它包含每个通道的比例值,乘以输入图像的每个通道。如果 scale
为 None
,则不应用缩放。None
。应用于输入的偏移量。如果 offset
是单个浮点数,则整个输入将与 offset
求和。如果 offset
是一个元组,则假定它包含每个通道的偏移量值,与输入图像的每个通道求和。如果 offset
为 None
,则不应用缩放。True
,则在不失真纵横比的情况下调整图像大小。当原始纵横比与目标纵横比不同时,输出图像将被裁剪,以返回图像中与目标纵横比匹配的最大可能窗口(大小为 (height, width)
)。默认情况下(crop_to_aspect_ratio=False
),纵横比可能不会保留。"xyxy"
、"rel_xyxy"
、"xywh"
、"center_xywh"
、"yxyx"
、"rel_yxyx"
之一。指定将与图像一起调整为 image_size
的边界框的格式。要将边界框传递到此层,请在调用该层时传递一个包含键 "images"
和 "bounding_boxes"
的字典。"channels_last"
或 "channels_first"
。输入中维度的顺序。"channels_last"
对应于形状为 (batch, height, width, channels)
的输入,而 "channels_first"
对应于形状为 (batch, channels, height, width)
的输入。它默认为您的 Keras 配置文件 ~/.keras/keras.json
中找到的 image_data_format
值。如果您从未设置它,那么它将是 "channels_last"
。示例
# Resize raw images and scale them to [0, 1].
converter = keras_hub.layers.ImageConverter(
image_size=(128, 128),
scale=1. / 255,
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
# Resize images to the specific size needed for a PaliGemma preset.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
from_preset
方法SigLIPImageConverter.from_preset(preset, **kwargs)
从模型预设实例化一个 `keras_hub.layers.ImageConverter`。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
您可以运行 `cls.presets.keys()` 来列出该类上所有可用的内置预设。
参数
示例
batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
# Resize images for `"pali_gemma_3b_224"`.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(batch) # # Output shape (2, 224, 224, 3)
# Resize images for `"pali_gemma_3b_448"` without cropping.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_448",
crop_to_aspect_ratio=False,
)
converter(batch) # # Output shape (2, 448, 448, 3)
预设 | 参数 | 描述 |
---|---|---|
siglip_base_patch16_224 | 203.16M | 2 亿参数,图像尺寸 224,在 WebLi 上预训练。 |
siglip_base_patch16_256 | 203.20M | 2 亿参数,图像尺寸 256,在 WebLi 上预训练。 |
siglip_base_patch16_384 | 203.45M | 2 亿参数,图像尺寸 384,在 WebLi 上预训练。 |
siglip_base_patch16_512 | 203.79M | 2 亿参数,图像尺寸 512,在 WebLi 上预训练。 |
siglip_base_patch16_256_multilingual | 370.63M | 3.7 亿参数,图像尺寸 256,在 WebLi 上预训练。 |
siglip2_base_patch16_224 | 375.19M | 3.75 亿参数,补丁大小 16,图像尺寸 224,在 WebLi 上预训练。 |
siglip2_base_patch16_256 | 375.23M | 3.75 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。 |
siglip2_base_patch32_256 | 376.86M | 3.76 亿参数,补丁大小 32,图像尺寸 256,在 WebLi 上预训练。 |
siglip2_base_patch16_384 | 376.86M | 3.76 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。 |
siglip_large_patch16_256 | 652.15M | 6.52 亿参数,图像尺寸 256,在 WebLi 上预训练。 |
siglip_large_patch16_384 | 652.48M | 6.52 亿参数,图像尺寸 384,在 WebLi 上预训练。 |
siglip_so400m_patch14_224 | 877.36M | 8.77 亿参数,图像尺寸 224,形状优化版本,在 WebLi 上预训练。 |
siglip_so400m_patch14_384 | 877.96M | 8.77 亿参数,图像尺寸 384,形状优化版本,在 WebLi 上预训练。 |
siglip2_large_patch16_256 | 881.53M | 8.81 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。 |
siglip2_large_patch16_384 | 881.86M | 8.81 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。 |
siglip2_large_patch16_512 | 882.31M | 8.82 亿参数,补丁大小 16,图像尺寸 512,在 WebLi 上预训练。 |
siglip_so400m_patch16_256_i18n | 1.13B | 11 亿参数,图像尺寸 256,形状优化版本,在 WebLi 上预训练。 |
siglip2_so400m_patch14_224 | 1.14B | 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。 |
siglip2_so400m_patch16_256 | 1.14B | 11 亿参数,补丁大小 16,图像尺寸 256,形状优化版本,在 WebLi 上预训练。 |
siglip2_so400m_patch14_384 | 1.14B | 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。 |
siglip2_so400m_patch16_384 | 1.14B | 11 亿参数,补丁大小 16,图像尺寸 384,形状优化版本,在 WebLi 上预训练。 |
siglip2_so400m_patch16_512 | 1.14B | 11 亿参数,补丁大小 16,图像尺寸 512,形状优化版本,在 WebLi 上预训练。 |
siglip2_giant_opt_patch16_256 | 1.87B | 18 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。 |
siglip2_giant_opt_patch16_384 | 1.87B | 18 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。 |