KerasHub:预训练模型 / API 文档 / 模型架构 / Phi3 / Phi3CausalLM 模型

Phi3CausalLM 模型

[源代码]

Phi3CausalLM

keras_hub.models.Phi3CausalLM(backbone, preprocessor=None, **kwargs)

一个用于因果语言建模的端到端 Phi3 模型。

因果语言模型 (LM) 基于之前的标记预测下一个标记。这种任务设置可用于在纯文本输入上无监督地训练模型,或自动回归地生成与用于训练的数据类似的纯文本。该任务可用于预训练或微调 Phi-3 模型,只需调用 fit() 即可。

此模型具有一个 generate() 方法,该方法根据提示生成文本。所使用的生成策略由 compile() 上的附加 sampler 参数控制。您可以重新编译模型,使用不同的 keras_hub.samplers 对象来控制生成。默认情况下,将使用 "top_k" 采样。

参数


[源代码]

from_preset 方法

Phi3CausalLM.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。要么从特定任务的基类(如 keras_hub.models.CausalLM.from_preset())调用,要么从模型类(如 keras_hub.models.BertTextClassifier.from_preset())调用。如果从基类调用,则返回对象的子类将根据预设目录中的配置推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
phi3_mini_4k_instruct_en 3.82B 38 亿参数,32 层,4k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。此数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。
phi3_mini_128k_instruct_en 3.82B 38 亿参数,32 层,128k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。此数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。

[源代码]

generate 方法

Phi3CausalLM.generate(inputs, max_length=None, stop_token_ids="auto")

根据提示 inputs 生成文本。

此方法根据给定的 inputs 生成文本。用于生成的采样方法可以通过 compile() 方法设置。

如果 inputs 是一个 tf.data.Dataset,输出将“逐批”生成并连接起来。否则,所有输入将被视为单个批次处理。

如果 preprocessor 附加到模型,则 inputs 将在 generate() 函数内部进行预处理,并且应与 preprocessor 层期望的结构匹配(通常是原始字符串)。如果未附加 preprocessor,则输入应与 backbone 期望的结构匹配。请参阅上面的示例用法以了解每种情况的演示。

参数

  • inputs: Python 数据、张量数据或 tf.data.Dataset。如果 preprocessor 附加到模型,则 inputs 应与 preprocessor 层期望的结构匹配。如果未附加 preprocessor,则 inputs 应与 backbone 模型期望的结构匹配。
  • max_length: 可选。int。生成序列的最大长度。将默认为 preprocessor 配置的最大 sequence_length。如果 preprocessorNone,则 inputs 应该填充到所需的最小长度,并且此参数将被忽略。
  • stop_token_ids: 可选。None、"auto" 或标记 ID 元组。默认为 "auto",它使用 preprocessor.tokenizer.end_token_id。未指定处理器将导致错误。None 在生成 max_length 标记后停止生成。您还可以指定模型应停止的标记 ID 列表。请注意,每个标记序列都将被解释为停止标记,不支持多标记停止序列。
  • strip_prompt:可选。默认情况下,generate() 返回完整的提示及其后由模型生成的补全内容。如果此选项设置为 True,则只返回新生成的文本。

backbone 属性

keras_hub.models.Phi3CausalLM.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.Phi3CausalLM.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。