KerasHub: 预训练模型 / API 文档 / 模型架构 / PaliGemma / PaliGemmaBackbone 模型

PaliGemmaBackbone 模型

[源代码]

PaliGemmaBackbone

keras_hub.models.PaliGemmaBackbone(
    vocabulary_size,
    image_size,
    num_layers,
    num_query_heads,
    num_key_value_heads,
    hidden_dim,
    intermediate_dim,
    head_dim,
    vit_patch_size,
    vit_num_heads,
    vit_hidden_dim,
    vit_num_layers,
    vit_intermediate_dim=None,
    vit_pooling=None,
    vit_classifier_activation=None,
    vit_name=None,
    query_head_dim_normalize=True,
    use_post_ffw_norm=False,
    use_post_attention_norm=False,
    attention_logit_soft_cap=None,
    final_logit_soft_cap=None,
    use_sliding_window_attention=False,
    sliding_window_size=4096,
    layer_norm_epsilon=1e-06,
    dropout=0,
    dtype=None,
    **kwargs
)

具有超参数的 PaliGemma 核心网络。

此主干网络实现了混合模态 PaliGemma 架构。它包含一个视觉转换器网络,以及文本标记嵌入层,然后是一个与后端无关的连接操作,用于构建混合类型嵌入(视觉和文本)的表示序列。然后,连接后的序列通过一系列混合模态解码器块。调用此模型返回的值表示输出标记的概率值。

有关更高级别的文本生成对象,请参阅 keras_hub.models.PaliGemmaCausalLM

默认构造函数提供了一个完全可定制的、随机初始化的 PaliGemma 模型,具有任意数量的 vit 层、注意力头、嵌入维度以及 PaliGemma 解码器层的等效配置。要加载预设架构和权重,请使用 from_preset 构造函数。

参数

  • vocabulary_size:整数。词元词汇表的大小。
  • image_size: int。图像的宽度和高度分辨率。注意:输入图像必须是正方形。
  • num_layers: int。转换器混合解码器层的数量。
  • num_query_heads: int。混合解码器注意力层中查询投影的注意力头数量。
  • num_key_value_heads: int。混合解码器注意力层中键和值投影的注意力头数量。
  • hidden_dim: int。每个混合转换器层末尾的转换器隐藏状态的大小。
  • intermediate_dim: int。每个转换器解码器块中两层前馈网络中第一个 Dense 层的输出维度。
  • head_dim: int。混合解码器中每个注意力头的大小。
  • vit_patch_size: int。输入图像中每个正方形块的大小。
  • vit_num_heads: int。视觉(图像)转换器编码器的注意力头数量。
  • vit_hidden_dim: int。每个视觉转换器层末尾的转换器隐藏状态的大小。
  • vit_num_layers: int。视觉转换器层的数量。
  • vit_intermediate_dim: int。视觉转换器中两层前馈网络中第一个 Dense 层的输出维度。默认为 4304
  • vit_pooling: None 或字符串。编码后的视觉嵌入使用指定的池化设置进行池化。接受的值为 "map""gap""0"None。默认为 None
  • vit_classifier_activation: 激活函数。用于视觉转换器中最终输出分类的激活函数。默认为 None
  • vit_name: string。用于视觉转换器层的名称。
  • query_head_dim_normalize: boolean。如果为 True,则在注意力之前使用 head_dim 对查询进行归一化。如果为 False,则使用 hidden_dim / num_query_heads 对查询进行归一化。默认为 True
  • use_post_ffw_norm: boolean。是否在前馈块之后进行归一化。默认为 False
  • use_post_attention_norm: boolean。是否在注意力块之后进行归一化。默认为 False
  • attention_logit_soft_cap: None 或 int。注意力 logits 的软上限。默认为 None
  • final_logit_soft_cap: None 或 int。最终 logits 的软上限。默认为 None
  • use_sliding_window_attention: boolean。是否使用滑动局部窗口注意力。默认为 False
  • sliding_window_size: int。滑动局部窗口的大小。默认为 4096
  • layer_norm_epsilon: float。所有转换器块中每个层归一化使用的 epsilon 值。默认为 1e-6
  • dropout: float。转换器解码器块的 dropout 概率。默认为 0
  • dtype: 字符串或 keras.mixed_precision.DTypePolicy。用于模型计算和权重的 dtype。请注意,某些计算(例如 softmax 和层归一化)将始终以 float32 精度完成,无论 dtype 如何。

示例

input_data = {
    "token_ids": np.ones(shape=(1, 12), dtype="int32"),
    "images": np.random.uniform(size=(1, 224, 224, 3)),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}

# Pretrained PaliGemma decoder.
model = keras_hub.models.PaliGemmaBackbone.from_preset("pali_gemma_mix_224")
model(input_data)

# Randomly initialized PaliGemma decoder with custom config.
model = keras_hub.models.PaliGemmaBackbone(
    vocabulary_size=50257,
    images_size=224,
    num_layers=12,
    num_query_heads=12,
    num_key_value_heads=1,
    hidden_dim=768,
    intermediate_dim=3072,
    head_dim=64,
    vit_patch_size=14,
    vit_num_heads=8,
    vit_hidden_dim=768,
    vit_intermediate_dim=3072,
    vit_num_layers=2,
)
model(input_data)

[源代码]

from_preset 方法

PaliGemmaBackbone.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Backbone

预设是一个包含配置、权重和其他文件资源的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

此构造函数可以通过两种方式调用。可以从基类(例如 keras_hub.models.Backbone.from_preset())调用,也可以从模型类(例如 keras_hub.models.GemmaBackbone.from_preset())调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断。

对于任何 Backbone 子类,您可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights:布尔值。如果为 `True`,权重将被加载到模型架构中。如果为 `False`,权重将被随机初始化。

示例

# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
    "gemma_2b_en",
)

# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
    "bert_base_en",
    load_weights=False,
)
预设 参数 描述
pali_gemma_3b_mix_224 2.92B 图像大小 224,混合微调,文本序列长度为 256
pali_gemma_3b_224 2.92B 图像大小 224,预训练,文本序列长度为 128
pali_gemma_3b_mix_448 2.92B 图像大小 448,混合微调,文本序列长度为 512
pali_gemma_3b_448 2.92B 图像大小 448,预训练,文本序列长度为 512
pali_gemma_3b_896 2.93B 图像大小 896,预训练,文本序列长度为 512
pali_gemma2_mix_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma_2_ft_docci_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_3b_896 3.04B 30 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_ft_docci_10b_448 9.66B 100 亿参数,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_10b_896 9.67B 100 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_mix_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_896 27.65B 280 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。

token_embedding 属性

keras_hub.models.PaliGemmaBackbone.token_embedding

一个用于嵌入词元 ID 的 keras.layers.Embedding 实例。

该层将整数词元 ID 嵌入到模型的隐藏维度。