KerasHub:预训练模型 / API 文档 / 模型架构 / EfficientNet / EfficientNetImageClassifier 模型

EfficientNetImageClassifier 模型

[源代码]

EfficientNetImageClassifier

keras_hub.models.EfficientNetImageClassifier(
    backbone,
    num_classes,
    preprocessor=None,
    pooling="avg",
    activation=None,
    dropout=0.0,
    head_dtype=None,
    **kwargs
)

所有图像分类任务的基类。

ImageClassifier 任务封装了 keras_hub.models.Backbonekeras_hub.models.Preprocessor,以创建可用于图像分类的模型。ImageClassifier 任务接受一个额外的 num_classes 参数,用于控制预测输出类的数量。

要使用 fit() 进行微调,请传递一个包含 (x, y) 标签元组的数据集,其中 x 是字符串,y[0, num_classes) 范围内的整数。所有 ImageClassifier 任务都包含一个 from_preset() 构造函数,可用于加载预训练配置和权重。

参数

  • backbone:一个 keras_hub.models.Backbone 实例或一个 keras.Model
  • num_classes:int。要预测的类别数量。
  • preprocessorNonekeras_hub.models.Preprocessor 实例、keras.Layer 实例或可调用对象。如果为 None,则不会对输入应用预处理。
  • pooling"avg""max"。要应用于主干网络输出的池化类型。默认为平均池化。
  • activationNone、str 或可调用对象。用于 Dense 层的激活函数。将 activation 设置为 None 以返回输出 logits。默认为 "softmax"
  • head_dtypeNone、str 或 keras.mixed_precision.DTypePolicy。用于分类头计算和权重的 dtype。

示例

调用 predict() 运行推理。

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.predict(images)

在单个批次上调用 fit()

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.fit(x=images, y=labels, batch_size=2)

使用自定义损失、优化器和主干网络调用 fit()

classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)

自定义主干网络。

images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
backbone = keras_hub.models.ResNetBackbone(
    stackwise_num_filters=[64, 64, 64],
    stackwise_num_blocks=[2, 2, 2],
    stackwise_num_strides=[1, 2, 2],
    block_type="basic_block",
    use_pre_activation=True,
    pooling="avg",
)
classifier = keras_hub.models.ImageClassifier(
    backbone=backbone,
    num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)

[源代码]

from_preset 方法

EfficientNetImageClassifier.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用:从任务特定的基类调用,例如 keras_hub.models.CausalLM.from_preset(),或者从模型类调用,例如 keras_hub.models.BertTextClassifier.from_preset()。如果从基类调用,则返回对象的子类将根据预设目录中的配置推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
efficientnet_lite0_ra_imagenet 4.65M EfficientNet-Lite 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行微调。
efficientnet_b0_ra_imagenet 5.29M EfficientNet B0 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。
efficientnet_b0_ra4_e3600_r224_imagenet 5.29M EfficientNet B0 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。
efficientnet_es_ra_imagenet 5.44M EfficientNet-EdgeTPU Small 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。
efficientnet_em_ra2_imagenet 6.90M EfficientNet-EdgeTPU Medium 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b1_ft_imagenet 7.79M EfficientNet B1 模型在 ImageNet 1k 数据集上进行微调。
efficientnet_b1_ra4_e3600_r240_imagenet 7.79M EfficientNet B1 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。
efficientnet_b2_ra_imagenet 9.11M EfficientNet B2 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。
efficientnet_el_ra_imagenet 10.59M EfficientNet-EdgeTPU Large 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。
efficientnet_b3_ra2_imagenet 12.23M EfficientNet B3 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。
efficientnet2_rw_t_ra2_imagenet 13.65M EfficientNet-v2 Tiny 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b4_ra2_imagenet 19.34M EfficientNet B4 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。
efficientnet2_rw_s_ra2_imagenet 23.94M EfficientNet-v2 Small 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b5_sw_imagenet 30.39M EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。
efficientnet_b5_sw_ft_imagenet 30.39M EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练,并在 ImageNet-1k 上微调。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。
efficientnet2_rw_m_agc_imagenet 53.24M EfficientNet-v2 Medium 模型在 ImageNet 1k 数据集上使用自适应梯度裁剪进行训练。

backbone 属性

keras_hub.models.EfficientNetImageClassifier.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.EfficientNetImageClassifier.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。