CLIPTokenizer

[源代码]

CLIPTokenizer

keras_hub.tokenizers.CLIPTokenizer(
    vocabulary=None, merges=None, pad_with_end_token=False, **kwargs
)

使用字节对编码子词分割的 CLIP 分词器。

这个分词器类将原始字符串分词为整数序列,并基于 keras_hub.tokenizers.BytePairTokenizer。与底层分词器不同,它将检查 CLIP 模型所需的所有特殊 token,并提供一个 from_preset() 方法来自动下载 CLIP 预设的匹配词汇表。

如果输入是一批字符串(秩 > 0),该层将输出一个 tf.RaggedTensor,其中输出的最后一个维度是不规则的。

如果输入是标量字符串(秩 == 0),该层将输出一个具有静态形状 [None] 的密集 tf.Tensor

参数

  • vocabulary: 字符串或字典,将词元映射到整数 ID。如果是字符串,则应为 json 文件的路径。
  • merges:字符串或列表,包含合并规则。如果它是字符串,则应为合并规则的文件路径。合并规则文件应每行包含一条合并规则。每条合并规则包含以空格分隔的合并实体。
  • pad_with_end_token: bool。是否用 end_token 填充输出。

示例

# Unbatched input.
tokenizer = keras_hub.models.CLIPTokenizer.from_preset(
    "clip_vit_base_patch32"
)
tokenizer("The quick brown fox jumped.")

# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])

# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))

[源代码]

from_preset 方法

CLIPTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)

从模型预设实例化一个 keras_hub.models.Tokenizer

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Tokenizer 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。可以从基类调用,例如 keras_hub.models.Tokenizer.from_preset(),或者从模型类调用,例如 keras_hub.models.GemmaTokenizer.from_preset()。如果从基类调用,返回对象的子类将根据预设目录中的配置推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights:布尔值。如果为 `True`,权重将被加载到模型架构中。如果为 `False`,权重将被随机初始化。

示例

# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")

# Tokenize some input.
tokenizer("The quick brown fox tripped.")

# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设 参数 描述
clip_vit_base_patch16 149.62M 1.5 亿参数,视觉 12 层,文本 12 层,补丁大小 16 的 CLIP 模型。
clip_vit_base_patch32 151.28M 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 CLIP 模型。
clip_vit_b_32_laion2b_s34b_b79k 151.28M 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 Open CLIP 模型。
clip_vit_large_patch14 427.62M 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14 的 CLIP 模型。
clip_vit_large_patch14_336 427.94M 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14,图像大小 336 的 CLIP 模型。
clip_vit_h_14_laion2b_s32b_b79k 986.11M 9.86 亿参数,视觉 32 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。
clip_vit_g_14_laion2b_s12b_b42k 1.37B 14 亿参数,视觉 40 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。
clip_vit_bigg_14_laion2b_39b_b160k 2.54B 25 亿参数,视觉 48 层,文本 32 层,补丁大小 14 的 Open CLIP 模型。