KerasHub:预训练模型 / API 文档 / 建模 API / CausalLMPreprocessor

CausalLMPreprocessor

[源代码]

CausalLMPreprocessor

keras_hub.models.CausalLMPreprocessor(
    tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)

因果语言模型预处理层的基类。

CausalLMPreprocessor 任务封装了一个 keras_hub.tokenizer.Tokenizer,用于为因果语言建模任务创建预处理层。它旨在与 keras.models.CausalLM 任务配合使用。

所有 CausalLMPreprocessor 都接受单个输入。这可以是一个字符串或一批字符串。请参阅下面的示例。这些输入将被分词并填充/截断到固定序列长度。

此层将始终输出一个 (x, y, sample_weight) 元组,其中 x 是一个包含分词输入的字典,y 包含 x 中偏移 1 的分词,sample_weight 标记 y 中包含填充值的位置。x 的确切内容将根据所使用的模型而异。

CausalLMPreprocessor 包含两个额外的方法,generate_preprocessgenerate_postprocess,用于生成。请参阅下面的示例。

所有 CausalLMPreprocessor 任务都包含一个 from_preset() 构造函数,可用于加载预训练配置和词汇表。您可以直接在此基类上调用 from_preset() 构造函数,在这种情况下,将自动实例化适合您的模型的正确类。

示例。

preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
    "bert_base_en_uncased",
    sequence_length=256, # Optional.
)

# Tokenize, mask and pack a single sentence.
x = "The quick brown fox jumped."
x, y, sample_weight = preprocessor(x)

# Tokenize and pad/truncate a batch of labeled sentences.
x = ["The quick brown fox jumped.", "Call me Ishmael."]
x, y, sample_weight = preprocessor(x)

# With a [`tf.data.Dataset`](https://tensorflowcn.cn/api_docs/python/tf/data/Dataset).
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)

# Generate preprocess and postprocess.
x = preprocessor.generate_preprocess(x)  # Tokenized numeric inputs.
x = preprocessor.generate_postprocess(x)  # Detokenized string outputs.

[源代码]

from_preset 方法

CausalLMPreprocessor.from_preset(preset, config_file="preprocessor.json", **kwargs)

从模型预设实例化一个 keras_hub.models.Preprocessor

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Preprocessor 子类,您可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

由于一个给定模型通常有多个预处理类,因此应在特定的子类上调用此方法,例如 keras_hub.models.BertTextClassifierPreprocessor.from_preset()

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。

示例

# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
    "gemma_2b_en",
)

# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
    "bert_base_en",
)
预设 参数 描述
bloom_560m_multi 559.21M 24 层 Bloom 模型,隐藏维度为 1024。在 45 种自然语言和 12 种编程语言上训练。
bloomz_560m_multi 559.21M 24 层 Bloom 模型,隐藏维度为 1024。在跨语言任务混合 (xP3) 数据集上进行微调。
bloom_1.1b_multi 1.07B 24 层 Bloom 模型,隐藏维度为 1536。在 45 种自然语言和 12 种编程语言上训练。
bloomz_1.1b_multi 1.07B 24 层 Bloom 模型,隐藏维度为 1536。在跨语言任务混合 (xP3) 数据集上进行微调。
bloom_1.7b_multi 1.72B 24 层 Bloom 模型,隐藏维度为 2048。在 45 种自然语言和 12 种编程语言上训练。
bloomz_1.7b_multi 1.72B 24 层 Bloom 模型,隐藏维度为 2048。在跨语言任务混合 (xP3) 数据集上进行微调。
bloom_3b_multi 3.00B 30 层 Bloom 模型,隐藏维度为 2560。在 45 种自然语言和 12 种编程语言上训练。
bloomz_3b_multi 3.00B 30 层 Bloom 模型,隐藏维度为 2560。在跨语言任务混合 (xP3) 数据集上进行微调。
falcon_refinedweb_1b_en 1.31B 24 层 Falcon 模型(参数为 10 亿的 Falcon),在 RefinedWeb 数据集的 3500 亿个标记上训练。
gemma_2b_en 25.1 亿 20 亿参数、18 层的 Gemma 基础模型。
gemma_instruct_2b_en 25.1 亿 20 亿参数、18 层的 Gemma 指令微调模型。
gemma_1.1_instruct_2b_en 25.1 亿 20 亿参数、18 层的 Gemma 指令微调模型。1.1 版本更新提高了模型质量。
code_gemma_1.1_2b_en 25.1 亿 20 亿参数、18 层的 CodeGemma 模型。此模型针对代码补全的“填充中间”(FIM) 任务进行了训练。1.1 版本更新提高了模型质量。
code_gemma_2b_en 25.1 亿 20 亿参数、18 层的 CodeGemma 模型。此模型针对代码补全的“填充中间”(FIM) 任务进行了训练。
gemma2_2b_en 26.1 亿 20 亿参数、26 层的 Gemma 基础模型。
gemma2_instruct_2b_en 26.1 亿 20 亿参数、26 层的 Gemma 指令微调模型。
shieldgemma_2b_en 26.1 亿 20 亿参数、26 层的 ShieldGemma 模型。
gemma_7b_en 85.4 亿 70 亿参数、28 层的 Gemma 基础模型。
gemma_instruct_7b_en 85.4 亿 70 亿参数、28 层的 Gemma 指令微调模型。
gemma_1.1_instruct_7b_en 85.4 亿 70 亿参数、28 层的 Gemma 指令微调模型。1.1 版本更新提高了模型质量。
code_gemma_7b_en 85.4 亿 70 亿参数、28 层的 CodeGemma 模型。此模型针对代码补全的“填充中间”(FIM) 任务进行了训练。
code_gemma_instruct_7b_en 85.4 亿 70 亿参数、28 层的 CodeGemma 指令微调模型。此模型针对与代码相关的聊天用例进行了训练。
code_gemma_1.1_instruct_7b_en 85.4 亿 70 亿参数、28 层的 CodeGemma 指令微调模型。此模型针对与代码相关的聊天用例进行了训练。1.1 版本更新提高了模型质量。
gemma2_9b_en 92.4 亿 90 亿参数、42 层的 Gemma 基础模型。
gemma2_instruct_9b_en 92.4 亿 90 亿参数、42 层的 Gemma 指令微调模型。
shieldgemma_9b_en 92.4 亿 90 亿参数、42 层的 ShieldGemma 模型。
gemma2_27b_en 272.3 亿 270 亿参数、42 层的 Gemma 基础模型。
gemma2_instruct_27b_en 272.3 亿 270 亿参数、42 层的 Gemma 指令微调模型。
shieldgemma_27b_en 272.3 亿 270 亿参数、42 层的 ShieldGemma 模型。
gemma3_1b 999.89M 10 亿参数,26 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_1b 999.89M 10 亿参数,26 层,仅文本指令微调 Gemma3 模型。
gemma3_4b_text 3.88B 40 亿参数,34 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_4b_text 3.88B 40 亿参数,34 层,仅文本指令微调 Gemma3 模型。
gemma3_4b 4.30B 40 亿参数,34 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_4b 4.30B 40 亿参数,34 层,视觉+文本指令微调 Gemma3 模型。
gemma3_12b_text 11.77B 120 亿参数,48 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_12b_text 11.77B 120 亿参数,48 层,仅文本指令微调 Gemma3 模型。
gemma3_12b 12.19B 120 亿参数,48 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_12b 12.19B 120 亿参数,48 层,视觉+文本指令微调 Gemma3 模型。
gemma3_27b_text 27.01B 270 亿参数,62 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_27b_text 27.01B 270 亿参数,62 层,仅文本指令微调 Gemma3 模型。
gemma3_27b 27.43B 270 亿参数,62 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_27b 27.43B 270 亿参数,62 层,视觉+文本指令微调 Gemma3 模型。
gpt2_base_en 124.44M 12 层 GPT-2 模型,大小写保持不变。在 WebText 上训练。
gpt2_base_en_cnn_dailymail 124.44M 12 层 GPT-2 模型,大小写保持不变。在 CNN/DailyMail 摘要数据集上微调。
gpt2_medium_en 354.82M 24 层 GPT-2 模型,大小写保持不变。在 WebText 上训练。
gpt2_large_en 774.03M 36 层 GPT-2 模型,大小写保持不变。在 WebText 上训练。
gpt2_extra_large_en 1.56B 48 层 GPT-2 模型,大小写保持不变。在 WebText 上训练。
llama2_7b_en 6.74B 70 亿参数,32 层,基础 LLaMA 2 模型。
llama2_instruct_7b_en 6.74B 70 亿参数,32 层,指令微调 LLaMA 2 模型。
vicuna_1.5_7b_en 6.74B 70 亿参数,32 层,指令微调 Vicuna v1.5 模型。
llama2_7b_en_int8 6.74B 70 亿参数,32 层,基础 LLaMA 2 模型,激活和权重均量化为 int8。
llama2_instruct_7b_en_int8 6.74B 70 亿参数,32 层,指令微调 LLaMA 2 模型,激活和权重均量化为 int8。
llama3.2_1b 15.0 亿 10 亿参数、16 层的 LLaMA 3.2 基础模型。
llama3.2_instruct_1b 15.0 亿 10 亿参数、16 层的经过指令调优的 LLaMA 3.2 模型。
llama3.2_guard_1b 15.0 亿 10 亿参数、16 层的 LLaMA 3.2 基础模型,为同意安全分类进行了微调。
llama3.2_3b 36.1 亿 30 亿参数、26 层的 LLaMA 3.2 基础模型。
llama3.2_instruct_3b 36.1 亿 30 亿参数、28 层的经过指令调优的 LLaMA 3.2 模型。
llama3_8b_en 80.3 亿 80 亿参数、32 层的 LLaMA 3 基础模型。
llama3_instruct_8b_en 80.3 亿 80 亿参数、32 层的经过指令调优的 LLaMA 3 模型。
llama3.1_8b 80.3 亿 80 亿参数、32 层的 LLaMA 3.1 基础模型。
llama3.1_instruct_8b 80.3 亿 80 亿参数、32 层的经过指令调优的 LLaMA 3.1 模型。
llama3.1_guard_8b 80.3 亿 80 亿参数、32 层的 LLaMA 3.1 模型,为同意安全分类进行了微调。
llama3_8b_en_int8 80.3 亿 80 亿参数、32 层的 LLaMA 3 基础模型,其激活和权重被量化为 int8。
llama3_instruct_8b_en_int8 80.3 亿 80 亿参数、32 层的经过指令调优的 LLaMA 3 模型,其激活和权重被量化为 int8。
mistral_7b_en 72.4 亿 Mistral 7B 基础模型
mistral_instruct_7b_en 72.4 亿 Mistral 7B 指令模型
mistral_0.2_instruct_7b_en 72.4 亿 Mistral 7B 指令模型 0.2 版
mixtral_8_7b_en 46.70B 32 层 Mixtral MoE 模型,具有 70 亿个活动参数和每个 MoE 层 8 个专家。
mixtral_8_instruct_7b_en 46.70B 指令微调 32 层 Mixtral MoE 模型,具有 70 亿个活动参数和每个 MoE 层 8 个专家。
opt_125m_en 125.24M 12 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_1.3b_en 1.32B 24 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_2.7b_en 2.70B 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_6.7b_en 6.70B 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
pali_gemma_3b_mix_224 2.92B 图像大小 224,混合微调,文本序列长度为 256
pali_gemma_3b_224 2.92B 图像大小 224,预训练,文本序列长度为 128
pali_gemma_3b_mix_448 2.92B 图像大小 448,混合微调,文本序列长度为 512
pali_gemma_3b_448 2.92B 图像大小 448,预训练,文本序列长度为 512
pali_gemma_3b_896 2.93B 图像大小 896,预训练,文本序列长度为 512
pali_gemma2_mix_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma_2_ft_docci_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_3b_896 3.04B 30 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_ft_docci_10b_448 9.66B 100 亿参数,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_10b_896 9.67B 100 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_mix_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_896 27.65B 280 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
phi3_mini_4k_instruct_en 3.82B 38 亿参数,32 层,4k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。此数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。
phi3_mini_128k_instruct_en 3.82B 38 亿参数,32 层,128k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。此数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。
qwen2.5_0.5b_en 494.03M 24 层 Qwen 模型,参数为 5 亿。
qwen2.5_instruct_0.5b_en 494.03M 指令微调 24 层 Qwen 模型,参数为 5 亿。
qwen2.5_3b_en 3.09B 36 层 Qwen 模型,参数为 31 亿。
qwen2.5_7b_en 6.99B 48 层 Qwen 模型,参数为 70 亿。
qwen2.5_instruct_32b_en 32.76B 指令微调 64 层 Qwen 模型,参数为 320 亿。
qwen2.5_instruct_72b_en 72.71B 指令微调 80 层 Qwen 模型,参数为 720 亿。
qwen1.5_moe_2.7b_en 14.32B 24 层 Qwen MoE 模型,具有 27 亿个活动参数和每个 MoE 层 8 个专家。
siglip_base_patch16_224 203.16M 2 亿参数,图像尺寸 224,在 WebLi 上预训练。
siglip_base_patch16_256 203.20M 2 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip_base_patch16_384 203.45M 2 亿参数,图像尺寸 384,在 WebLi 上预训练。
siglip_base_patch16_512 203.79M 2 亿参数,图像尺寸 512,在 WebLi 上预训练。
siglip_base_patch16_256_multilingual 370.63M 3.7 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch16_224 375.19M 3.75 亿参数,补丁大小 16,图像尺寸 224,在 WebLi 上预训练。
siglip2_base_patch16_256 375.23M 3.75 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch32_256 376.86M 3.76 亿参数,补丁大小 32,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch16_384 376.86M 3.76 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。
siglip_large_patch16_256 652.15M 6.52 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip_large_patch16_384 652.48M 6.52 亿参数,图像尺寸 384,在 WebLi 上预训练。
siglip_so400m_patch14_224 877.36M 8.77 亿参数,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip_so400m_patch14_384 877.96M 8.77 亿参数,图像尺寸 384,形状优化版本,在 WebLi 上预训练。
siglip2_large_patch16_256 881.53M 8.81 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_large_patch16_384 881.86M 8.81 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。
siglip2_large_patch16_512 882.31M 8.82 亿参数,补丁大小 16,图像尺寸 512,在 WebLi 上预训练。
siglip_so400m_patch16_256_i18n 1.13B 11 亿参数,图像尺寸 256,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch14_224 1.14B 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_256 1.14B 11 亿参数,补丁大小 16,图像尺寸 256,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch14_384 1.14B 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_384 1.14B 11 亿参数,补丁大小 16,图像尺寸 384,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_512 1.14B 11 亿参数,补丁大小 16,图像尺寸 512,形状优化版本,在 WebLi 上预训练。
siglip2_giant_opt_patch16_256 1.87B 18 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_giant_opt_patch16_384 1.87B 18 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。

[源代码]

save_to_preset 方法

CausalLMPreprocessor.save_to_preset(preset_dir)

将预处理器保存到预设目录。

参数

  • preset_dir:本地模型预设目录的路径。

tokenizer 属性

keras_hub.models.CausalLMPreprocessor.tokenizer

用于对字符串进行分词的分词器。