作者: Aritra Roy Gosthipaty
创建日期 2022/01/22
最后修改日期 2022/01/22
描述: 构建一个补丁式卷积网络架构并可视化其注意力图。
Vision Transformer(Dosovitskiy 等人)已成为卷积神经网络的强大替代品。ViT 以基于补丁的方式处理图像。然后将图像信息聚合成一个 CLASS
token。此 token 与图像中对于特定分类决策最重要的补丁相关联。
CLASS
token 与补丁之间的交互可以被可视化,以帮助解释分类决策。在 Touvron 等人的学术论文《使用基于注意力的聚合增强卷积网络》中,作者提出为卷积网络建立一个等效的可视化方法。他们提出用 Transformer 层替换卷积网络的全局平均池化层。Transformer 的自注意力层将生成注意力图,这些注意力图对应于图像中对于分类决策最受关注的补丁。
在此示例中,我们最小化地实现了《使用基于注意力的聚合增强卷积网络》中的思想。此示例的主要目标是涵盖以下思想,并进行了一些微小修改(以适应 CIFAR10 的实现):
此示例需要 TensorFlow Addons,可以使用以下命令进行安装:
pip install -U tensorflow-addons
import math
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import keras
from keras import layers
from keras import ops
from tensorflow import data as tf_data
# Set seed for reproducibiltiy
SEED = 42
keras.utils.set_random_seed(SEED)
# DATA
BATCH_SIZE = 128
BUFFER_SIZE = BATCH_SIZE * 2
AUTO = tf_data.AUTOTUNE
INPUT_SHAPE = (32, 32, 3)
NUM_CLASSES = 10 # for CIFAR 10
# AUGMENTATION
IMAGE_SIZE = 48 # We will resize input images to this size.
# ARCHITECTURE
DIMENSIONS = 256
SE_RATIO = 8
TRUNK_DEPTH = 2
# OPTIMIZER
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-4
# PRETRAINING
EPOCHS = 50
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
(x_train, y_train), (x_val, y_val) = (
(x_train[:40000], y_train[:40000]),
(x_train[40000:], y_train[40000:]),
)
print(f"Training samples: {len(x_train)}")
print(f"Validation samples: {len(x_val)}")
print(f"Testing samples: {len(x_test)}")
train_ds = tf_data.Dataset.from_tensor_slices((x_train, y_train))
train_ds = train_ds.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(AUTO)
val_ds = tf_data.Dataset.from_tensor_slices((x_val, y_val))
val_ds = val_ds.batch(BATCH_SIZE).prefetch(AUTO)
test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test))
test_ds = test_ds.batch(BATCH_SIZE).prefetch(AUTO)
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 16s 0us/step
170508288/170498071 [==============================] - 16s 0us/step
Training samples: 40000
Validation samples: 10000
Testing samples: 10000
def get_preprocessing():
model = keras.Sequential(
[
layers.Rescaling(1 / 255.0),
layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),
],
name="preprocessing",
)
return model
def get_train_augmentation_model():
model = keras.Sequential(
[
layers.Rescaling(1 / 255.0),
layers.Resizing(INPUT_SHAPE[0] + 20, INPUT_SHAPE[0] + 20),
layers.RandomCrop(IMAGE_SIZE, IMAGE_SIZE),
layers.RandomFlip("horizontal"),
],
name="train_data_augmentation",
)
return model
模型的卷积主干是一个轻量级的预处理模块,将图像像素映射到一组向量(补丁)。
def build_convolutional_stem(dimensions):
"""Build the convolutional stem.
Args:
dimensions: The embedding dimension of the patches (d in paper).
Returs:
The convolutional stem as a keras seqeuntial
model.
"""
config = {
"kernel_size": (3, 3),
"strides": (2, 2),
"activation": ops.gelu,
"padding": "same",
}
convolutional_stem = keras.Sequential(
[
layers.Conv2D(filters=dimensions // 2, **config),
layers.Conv2D(filters=dimensions, **config),
],
name="convolutional_stem",
)
return convolutional_stem
模型的主体是计算量最大的部分。它由 N
个堆叠的残差卷积块组成。
class SqueezeExcite(layers.Layer):
"""Applies squeeze and excitation to input feature maps as seen in
https://arxiv.org/abs/1709.01507.
Args:
ratio: The ratio with which the feature map needs to be reduced in
the reduction phase.
Inputs:
Convolutional features.
Outputs:
Attention modified feature maps.
"""
def __init__(self, ratio, **kwargs):
super().__init__(**kwargs)
self.ratio = ratio
def get_config(self):
config = super().get_config()
config.update({"ratio": self.ratio})
return config
def build(self, input_shape):
filters = input_shape[-1]
self.squeeze = layers.GlobalAveragePooling2D(keepdims=True)
self.reduction = layers.Dense(
units=filters // self.ratio,
activation="relu",
use_bias=False,
)
self.excite = layers.Dense(units=filters, activation="sigmoid", use_bias=False)
self.multiply = layers.Multiply()
def call(self, x):
shortcut = x
x = self.squeeze(x)
x = self.reduction(x)
x = self.excite(x)
x = self.multiply([shortcut, x])
return x
class Trunk(layers.Layer):
"""Convolutional residual trunk as in the https://arxiv.org/abs/2112.13692
Args:
depth: Number of trunk residual blocks
dimensions: Dimnesion of the model (denoted by d in the paper)
ratio: The Squeeze-Excitation ratio
Inputs:
Convolutional features extracted from the conv stem.
Outputs:
Flattened patches.
"""
def __init__(self, depth, dimensions, ratio, **kwargs):
super().__init__(**kwargs)
self.ratio = ratio
self.dimensions = dimensions
self.depth = depth
def get_config(self):
config = super().get_config()
config.update(
{
"ratio": self.ratio,
"dimensions": self.dimensions,
"depth": self.depth,
}
)
return config
def build(self, input_shape):
config = {
"filters": self.dimensions,
"activation": ops.gelu,
"padding": "same",
}
trunk_block = [
layers.LayerNormalization(epsilon=1e-6),
layers.Conv2D(kernel_size=(1, 1), **config),
layers.Conv2D(kernel_size=(3, 3), **config),
SqueezeExcite(ratio=self.ratio),
layers.Conv2D(kernel_size=(1, 1), filters=self.dimensions, padding="same"),
]
self.trunk_blocks = [keras.Sequential(trunk_block) for _ in range(self.depth)]
self.add = layers.Add()
self.flatten_spatial = layers.Reshape((-1, self.dimensions))
def call(self, x):
# Remember the input.
shortcut = x
for trunk_block in self.trunk_blocks:
output = trunk_block(x)
shortcut = self.add([output, shortcut])
x = shortcut
# Flatten the patches.
x = self.flatten_spatial(x)
return x
卷积主体的输出与一个可训练的查询类别 token 进行注意力计算。由此产生的注意力图是图像中每个补丁对于分类决策的权重。
class AttentionPooling(layers.Layer):
"""Applies attention to the patches extracted form the
trunk with the CLS token.
Args:
dimensions: The dimension of the whole architecture.
num_classes: The number of classes in the dataset.
Inputs:
Flattened patches from the trunk.
Outputs:
The modifies CLS token.
"""
def __init__(self, dimensions, num_classes, **kwargs):
super().__init__(**kwargs)
self.dimensions = dimensions
self.num_classes = num_classes
self.cls = keras.Variable(ops.zeros((1, 1, dimensions)))
def get_config(self):
config = super().get_config()
config.update(
{
"dimensions": self.dimensions,
"num_classes": self.num_classes,
"cls": self.cls.numpy(),
}
)
return config
def build(self, input_shape):
self.attention = layers.MultiHeadAttention(
num_heads=1,
key_dim=self.dimensions,
dropout=0.2,
)
self.layer_norm1 = layers.LayerNormalization(epsilon=1e-6)
self.layer_norm2 = layers.LayerNormalization(epsilon=1e-6)
self.layer_norm3 = layers.LayerNormalization(epsilon=1e-6)
self.mlp = keras.Sequential(
[
layers.Dense(units=self.dimensions, activation=ops.gelu),
layers.Dropout(0.2),
layers.Dense(units=self.dimensions, activation=ops.gelu),
]
)
self.dense = layers.Dense(units=self.num_classes)
self.flatten = layers.Flatten()
def call(self, x):
batch_size = ops.shape(x)[0]
# Expand the class token batch number of times.
class_token = ops.repeat(self.cls, repeats=batch_size, axis=0)
# Concat the input with the trainable class token.
x = ops.concatenate([class_token, x], axis=1)
# Apply attention to x.
x = self.layer_norm1(x)
x, viz_weights = self.attention(
query=x[:, 0:1], key=x, value=x, return_attention_scores=True
)
class_token = class_token + x
class_token = self.layer_norm2(class_token)
class_token = self.flatten(class_token)
class_token = self.layer_norm3(class_token)
class_token = class_token + self.mlp(class_token)
# Build the logits
logits = self.dense(class_token)
return logits, ops.squeeze(viz_weights)[..., 1:]
补丁式卷积网络如下图所示。
![]() |
---|
来源 |
架构中的所有模块都在前面部分构建。在本节中,我们将所有不同的模块堆叠在一起。
class PatchConvNet(keras.Model):
def __init__(
self,
stem,
trunk,
attention_pooling,
preprocessing_model,
train_augmentation_model,
**kwargs,
):
super().__init__(**kwargs)
self.stem = stem
self.trunk = trunk
self.attention_pooling = attention_pooling
self.train_augmentation_model = train_augmentation_model
self.preprocessing_model = preprocessing_model
def get_config(self):
config = super().get_config()
config.update(
{
"stem": self.stem,
"trunk": self.trunk,
"attention_pooling": self.attention_pooling,
"train_augmentation_model": self.train_augmentation_model,
"preprocessing_model": self.preprocessing_model,
}
)
return config
def _calculate_loss(self, inputs, test=False):
images, labels = inputs
# Augment the input images.
if test:
augmented_images = self.preprocessing_model(images)
else:
augmented_images = self.train_augmentation_model(images)
# Pass through the stem.
x = self.stem(augmented_images)
# Pass through the trunk.
x = self.trunk(x)
# Pass through the attention pooling block.
logits, _ = self.attention_pooling(x)
# Compute the total loss.
total_loss = self.compiled_loss(labels, logits)
return total_loss, logits
def train_step(self, inputs):
with tf.GradientTape() as tape:
total_loss, logits = self._calculate_loss(inputs)
# Apply gradients.
train_vars = [
self.stem.trainable_variables,
self.trunk.trainable_variables,
self.attention_pooling.trainable_variables,
]
grads = tape.gradient(total_loss, train_vars)
trainable_variable_list = []
for grad, var in zip(grads, train_vars):
for g, v in zip(grad, var):
trainable_variable_list.append((g, v))
self.optimizer.apply_gradients(trainable_variable_list)
# Report progress.
_, labels = inputs
self.compiled_metrics.update_state(labels, logits)
return {m.name: m.result() for m in self.metrics}
def test_step(self, inputs):
total_loss, logits = self._calculate_loss(inputs, test=True)
# Report progress.
_, labels = inputs
self.compiled_metrics.update_state(labels, logits)
return {m.name: m.result() for m in self.metrics}
def call(self, images):
# Augment the input images.
augmented_images = self.preprocessing_model(images)
# Pass through the stem.
x = self.stem(augmented_images)
# Pass through the trunk.
x = self.trunk(x)
# Pass through the attention pooling block.
logits, viz_weights = self.attention_pooling(x)
return logits, viz_weights
此回调将绘制图像并将注意力图叠加到图像上。
# Taking a batch of test inputs to measure model's progress.
test_images, test_labels = next(iter(test_ds))
class TrainMonitor(keras.callbacks.Callback):
def __init__(self, epoch_interval=None):
self.epoch_interval = epoch_interval
def on_epoch_end(self, epoch, logs=None):
if self.epoch_interval and epoch % self.epoch_interval == 4:
test_augmented_images = self.model.preprocessing_model(test_images)
# Pass through the stem.
test_x = self.model.stem(test_augmented_images)
# Pass through the trunk.
test_x = self.model.trunk(test_x)
# Pass through the attention pooling block.
_, test_viz_weights = self.model.attention_pooling(test_x)
# Reshape the vizualization weights
num_patches = ops.shape(test_viz_weights)[-1]
height = width = int(math.sqrt(num_patches))
test_viz_weights = layers.Reshape((height, width))(test_viz_weights)
# Take a random image and its attention weights.
index = np.random.randint(low=0, high=ops.shape(test_augmented_images)[0])
selected_image = test_augmented_images[index]
selected_weight = test_viz_weights[index]
# Plot the images and the overlayed attention map.
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
ax[0].imshow(selected_image)
ax[0].set_title(f"Original: {epoch:03d}")
ax[0].axis("off")
img = ax[1].imshow(selected_image)
ax[1].imshow(
selected_weight, cmap="inferno", alpha=0.6, extent=img.get_extent()
)
ax[1].set_title(f"Attended: {epoch:03d}")
ax[1].axis("off")
plt.axis("off")
plt.show()
plt.close()
class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps
):
super().__init__()
self.learning_rate_base = learning_rate_base
self.total_steps = total_steps
self.warmup_learning_rate = warmup_learning_rate
self.warmup_steps = warmup_steps
self.pi = np.pi
def __call__(self, step):
if self.total_steps < self.warmup_steps:
raise ValueError("Total_steps must be larger or equal to warmup_steps.")
cos_annealed_lr = ops.cos(
self.pi
* (ops.cast(step, "float32") - self.warmup_steps)
/ float(self.total_steps - self.warmup_steps)
)
learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr)
if self.warmup_steps > 0:
if self.learning_rate_base < self.warmup_learning_rate:
raise ValueError(
"Learning_rate_base must be larger or equal to "
"warmup_learning_rate."
)
slope = (
self.learning_rate_base - self.warmup_learning_rate
) / self.warmup_steps
warmup_rate = slope * ops.cast(step, "float32") + self.warmup_learning_rate
learning_rate = ops.where(
step < self.warmup_steps, warmup_rate, learning_rate
)
return ops.where(
step > self.total_steps,
0.0,
learning_rate,
)
total_steps = int((len(x_train) / BATCH_SIZE) * EPOCHS)
warmup_epoch_percentage = 0.15
warmup_steps = int(total_steps * warmup_epoch_percentage)
scheduled_lrs = WarmUpCosine(
learning_rate_base=LEARNING_RATE,
total_steps=total_steps,
warmup_learning_rate=0.0,
warmup_steps=warmup_steps,
)
我们构建模型,编译并训练它。
train_augmentation_model = get_train_augmentation_model()
preprocessing_model = get_preprocessing()
conv_stem = build_convolutional_stem(dimensions=DIMENSIONS)
conv_trunk = Trunk(depth=TRUNK_DEPTH, dimensions=DIMENSIONS, ratio=SE_RATIO)
attention_pooling = AttentionPooling(dimensions=DIMENSIONS, num_classes=NUM_CLASSES)
patch_conv_net = PatchConvNet(
stem=conv_stem,
trunk=conv_trunk,
attention_pooling=attention_pooling,
train_augmentation_model=train_augmentation_model,
preprocessing_model=preprocessing_model,
)
# Assemble the callbacks.
train_callbacks = [TrainMonitor(epoch_interval=5)]
# Get the optimizer.
optimizer = keras.optimizers.AdamW(
learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY
)
# Compile and pretrain the model.
patch_conv_net.compile(
optimizer=optimizer,
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"),
],
)
history = patch_conv_net.fit(
train_ds,
epochs=EPOCHS,
validation_data=val_ds,
callbacks=train_callbacks,
)
# Evaluate the model with the test dataset.
loss, acc_top1, acc_top5 = patch_conv_net.evaluate(test_ds)
print(f"Loss: {loss:0.2f}")
print(f"Top 1 test accuracy: {acc_top1*100:0.2f}%")
print(f"Top 5 test accuracy: {acc_top5*100:0.2f}%")
Epoch 1/50
313/313 [==============================] - 14s 27ms/step - loss: 1.9639 - accuracy: 0.2635 - top-5-accuracy: 0.7792 - val_loss: 1.7219 - val_accuracy: 0.3778 - val_top-5-accuracy: 0.8514
Epoch 2/50
313/313 [==============================] - 8s 26ms/step - loss: 1.5475 - accuracy: 0.4214 - top-5-accuracy: 0.9099 - val_loss: 1.4351 - val_accuracy: 0.4592 - val_top-5-accuracy: 0.9298
Epoch 3/50
313/313 [==============================] - 8s 25ms/step - loss: 1.3328 - accuracy: 0.5135 - top-5-accuracy: 0.9368 - val_loss: 1.3763 - val_accuracy: 0.5077 - val_top-5-accuracy: 0.9268
Epoch 4/50
313/313 [==============================] - 8s 25ms/step - loss: 1.1653 - accuracy: 0.5807 - top-5-accuracy: 0.9554 - val_loss: 1.0892 - val_accuracy: 0.6146 - val_top-5-accuracy: 0.9560
Epoch 5/50
313/313 [==============================] - ETA: 0s - loss: 1.0235 - accuracy: 0.6345 - top-5-accuracy: 0.9660
313/313 [==============================] - 8s 25ms/step - loss: 1.0235 - accuracy: 0.6345 - top-5-accuracy: 0.9660 - val_loss: 1.0085 - val_accuracy: 0.6424 - val_top-5-accuracy: 0.9640
Epoch 6/50
313/313 [==============================] - 8s 25ms/step - loss: 0.9190 - accuracy: 0.6729 - top-5-accuracy: 0.9741 - val_loss: 0.9066 - val_accuracy: 0.6850 - val_top-5-accuracy: 0.9751
Epoch 7/50
313/313 [==============================] - 8s 25ms/step - loss: 0.8331 - accuracy: 0.7056 - top-5-accuracy: 0.9783 - val_loss: 0.8844 - val_accuracy: 0.6903 - val_top-5-accuracy: 0.9779
Epoch 8/50
313/313 [==============================] - 8s 25ms/step - loss: 0.7526 - accuracy: 0.7376 - top-5-accuracy: 0.9823 - val_loss: 0.8200 - val_accuracy: 0.7114 - val_top-5-accuracy: 0.9793
Epoch 9/50
313/313 [==============================] - 8s 25ms/step - loss: 0.6853 - accuracy: 0.7636 - top-5-accuracy: 0.9856 - val_loss: 0.7216 - val_accuracy: 0.7584 - val_top-5-accuracy: 0.9823
Epoch 10/50
313/313 [==============================] - ETA: 0s - loss: 0.6260 - accuracy: 0.7849 - top-5-accuracy: 0.9877
313/313 [==============================] - 8s 25ms/step - loss: 0.6260 - accuracy: 0.7849 - top-5-accuracy: 0.9877 - val_loss: 0.6985 - val_accuracy: 0.7624 - val_top-5-accuracy: 0.9847
Epoch 11/50
313/313 [==============================] - 8s 25ms/step - loss: 0.5877 - accuracy: 0.7978 - top-5-accuracy: 0.9897 - val_loss: 0.7357 - val_accuracy: 0.7595 - val_top-5-accuracy: 0.9816
Epoch 12/50
313/313 [==============================] - 8s 25ms/step - loss: 0.5615 - accuracy: 0.8066 - top-5-accuracy: 0.9905 - val_loss: 0.6554 - val_accuracy: 0.7806 - val_top-5-accuracy: 0.9841
Epoch 13/50
313/313 [==============================] - 8s 25ms/step - loss: 0.5287 - accuracy: 0.8174 - top-5-accuracy: 0.9915 - val_loss: 0.5867 - val_accuracy: 0.8051 - val_top-5-accuracy: 0.9869
Epoch 14/50
313/313 [==============================] - 8s 25ms/step - loss: 0.4976 - accuracy: 0.8286 - top-5-accuracy: 0.9921 - val_loss: 0.5707 - val_accuracy: 0.8047 - val_top-5-accuracy: 0.9899
Epoch 15/50
313/313 [==============================] - ETA: 0s - loss: 0.4735 - accuracy: 0.8348 - top-5-accuracy: 0.9939
313/313 [==============================] - 8s 25ms/step - loss: 0.4735 - accuracy: 0.8348 - top-5-accuracy: 0.9939 - val_loss: 0.5945 - val_accuracy: 0.8040 - val_top-5-accuracy: 0.9883
Epoch 16/50
313/313 [==============================] - 8s 25ms/step - loss: 0.4660 - accuracy: 0.8364 - top-5-accuracy: 0.9936 - val_loss: 0.5629 - val_accuracy: 0.8125 - val_top-5-accuracy: 0.9906
Epoch 17/50
313/313 [==============================] - 8s 25ms/step - loss: 0.4416 - accuracy: 0.8462 - top-5-accuracy: 0.9946 - val_loss: 0.5747 - val_accuracy: 0.8013 - val_top-5-accuracy: 0.9888
Epoch 18/50
313/313 [==============================] - 8s 25ms/step - loss: 0.4175 - accuracy: 0.8560 - top-5-accuracy: 0.9949 - val_loss: 0.5672 - val_accuracy: 0.8088 - val_top-5-accuracy: 0.9903
Epoch 19/50
313/313 [==============================] - 8s 25ms/step - loss: 0.3912 - accuracy: 0.8650 - top-5-accuracy: 0.9957 - val_loss: 0.5454 - val_accuracy: 0.8136 - val_top-5-accuracy: 0.9907
Epoch 20/50
311/313 [============================>.] - ETA: 0s - loss: 0.3800 - accuracy: 0.8676 - top-5-accuracy: 0.9956
313/313 [==============================] - 8s 25ms/step - loss: 0.3801 - accuracy: 0.8676 - top-5-accuracy: 0.9956 - val_loss: 0.5274 - val_accuracy: 0.8222 - val_top-5-accuracy: 0.9915
Epoch 21/50
313/313 [==============================] - 8s 25ms/step - loss: 0.3641 - accuracy: 0.8734 - top-5-accuracy: 0.9962 - val_loss: 0.5032 - val_accuracy: 0.8315 - val_top-5-accuracy: 0.9921
Epoch 22/50
313/313 [==============================] - 8s 25ms/step - loss: 0.3474 - accuracy: 0.8805 - top-5-accuracy: 0.9970 - val_loss: 0.5251 - val_accuracy: 0.8302 - val_top-5-accuracy: 0.9917
Epoch 23/50
313/313 [==============================] - 8s 25ms/step - loss: 0.3327 - accuracy: 0.8833 - top-5-accuracy: 0.9976 - val_loss: 0.5158 - val_accuracy: 0.8321 - val_top-5-accuracy: 0.9903
Epoch 24/50
313/313 [==============================] - 8s 25ms/step - loss: 0.3158 - accuracy: 0.8897 - top-5-accuracy: 0.9977 - val_loss: 0.5098 - val_accuracy: 0.8355 - val_top-5-accuracy: 0.9912
Epoch 25/50
312/313 [============================>.] - ETA: 0s - loss: 0.2985 - accuracy: 0.8976 - top-5-accuracy: 0.9976
313/313 [==============================] - 8s 25ms/step - loss: 0.2986 - accuracy: 0.8976 - top-5-accuracy: 0.9976 - val_loss: 0.5302 - val_accuracy: 0.8276 - val_top-5-accuracy: 0.9922
Epoch 26/50
313/313 [==============================] - 8s 25ms/step - loss: 0.2819 - accuracy: 0.9021 - top-5-accuracy: 0.9977 - val_loss: 0.5130 - val_accuracy: 0.8358 - val_top-5-accuracy: 0.9923
Epoch 27/50
313/313 [==============================] - 8s 25ms/step - loss: 0.2696 - accuracy: 0.9065 - top-5-accuracy: 0.9983 - val_loss: 0.5096 - val_accuracy: 0.8389 - val_top-5-accuracy: 0.9926
Epoch 28/50
313/313 [==============================] - 8s 25ms/step - loss: 0.2526 - accuracy: 0.9115 - top-5-accuracy: 0.9983 - val_loss: 0.4988 - val_accuracy: 0.8403 - val_top-5-accuracy: 0.9921
Epoch 29/50
313/313 [==============================] - 8s 25ms/step - loss: 0.2322 - accuracy: 0.9190 - top-5-accuracy: 0.9987 - val_loss: 0.5234 - val_accuracy: 0.8395 - val_top-5-accuracy: 0.9915
Epoch 30/50
313/313 [==============================] - ETA: 0s - loss: 0.2180 - accuracy: 0.9235 - top-5-accuracy: 0.9988
313/313 [==============================] - 8s 26ms/step - loss: 0.2180 - accuracy: 0.9235 - top-5-accuracy: 0.9988 - val_loss: 0.5175 - val_accuracy: 0.8407 - val_top-5-accuracy: 0.9925
Epoch 31/50
313/313 [==============================] - 8s 25ms/step - loss: 0.2108 - accuracy: 0.9267 - top-5-accuracy: 0.9990 - val_loss: 0.5046 - val_accuracy: 0.8476 - val_top-5-accuracy: 0.9937
Epoch 32/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1929 - accuracy: 0.9337 - top-5-accuracy: 0.9991 - val_loss: 0.5096 - val_accuracy: 0.8516 - val_top-5-accuracy: 0.9914
Epoch 33/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1787 - accuracy: 0.9370 - top-5-accuracy: 0.9992 - val_loss: 0.4963 - val_accuracy: 0.8541 - val_top-5-accuracy: 0.9917
Epoch 34/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1653 - accuracy: 0.9428 - top-5-accuracy: 0.9994 - val_loss: 0.5092 - val_accuracy: 0.8547 - val_top-5-accuracy: 0.9921
Epoch 35/50
313/313 [==============================] - ETA: 0s - loss: 0.1544 - accuracy: 0.9464 - top-5-accuracy: 0.9995
313/313 [==============================] - 7s 24ms/step - loss: 0.1544 - accuracy: 0.9464 - top-5-accuracy: 0.9995 - val_loss: 0.5137 - val_accuracy: 0.8513 - val_top-5-accuracy: 0.9928
Epoch 36/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1418 - accuracy: 0.9507 - top-5-accuracy: 0.9997 - val_loss: 0.5267 - val_accuracy: 0.8560 - val_top-5-accuracy: 0.9913
Epoch 37/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1259 - accuracy: 0.9561 - top-5-accuracy: 0.9997 - val_loss: 0.5283 - val_accuracy: 0.8584 - val_top-5-accuracy: 0.9923
Epoch 38/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1166 - accuracy: 0.9599 - top-5-accuracy: 0.9997 - val_loss: 0.5541 - val_accuracy: 0.8549 - val_top-5-accuracy: 0.9919
Epoch 39/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1111 - accuracy: 0.9624 - top-5-accuracy: 0.9997 - val_loss: 0.5543 - val_accuracy: 0.8575 - val_top-5-accuracy: 0.9917
Epoch 40/50
312/313 [============================>.] - ETA: 0s - loss: 0.1017 - accuracy: 0.9653 - top-5-accuracy: 0.9997
313/313 [==============================] - 8s 25ms/step - loss: 0.1016 - accuracy: 0.9653 - top-5-accuracy: 0.9997 - val_loss: 0.5357 - val_accuracy: 0.8614 - val_top-5-accuracy: 0.9923
Epoch 41/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0925 - accuracy: 0.9687 - top-5-accuracy: 0.9998 - val_loss: 0.5248 - val_accuracy: 0.8615 - val_top-5-accuracy: 0.9924
Epoch 42/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0848 - accuracy: 0.9726 - top-5-accuracy: 0.9997 - val_loss: 0.5182 - val_accuracy: 0.8654 - val_top-5-accuracy: 0.9939
Epoch 43/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0823 - accuracy: 0.9724 - top-5-accuracy: 0.9999 - val_loss: 0.5010 - val_accuracy: 0.8679 - val_top-5-accuracy: 0.9931
Epoch 44/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0762 - accuracy: 0.9752 - top-5-accuracy: 0.9998 - val_loss: 0.5088 - val_accuracy: 0.8686 - val_top-5-accuracy: 0.9939
Epoch 45/50
312/313 [============================>.] - ETA: 0s - loss: 0.0752 - accuracy: 0.9763 - top-5-accuracy: 0.9999
313/313 [==============================] - 8s 26ms/step - loss: 0.0752 - accuracy: 0.9764 - top-5-accuracy: 0.9999 - val_loss: 0.4844 - val_accuracy: 0.8679 - val_top-5-accuracy: 0.9938
Epoch 46/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0789 - accuracy: 0.9745 - top-5-accuracy: 0.9997 - val_loss: 0.4774 - val_accuracy: 0.8702 - val_top-5-accuracy: 0.9937
Epoch 47/50
313/313 [==============================] - 8s 25ms/step - loss: 0.0866 - accuracy: 0.9726 - top-5-accuracy: 0.9998 - val_loss: 0.4644 - val_accuracy: 0.8666 - val_top-5-accuracy: 0.9936
Epoch 48/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1000 - accuracy: 0.9697 - top-5-accuracy: 0.9999 - val_loss: 0.4471 - val_accuracy: 0.8636 - val_top-5-accuracy: 0.9933
Epoch 49/50
313/313 [==============================] - 8s 25ms/step - loss: 0.1315 - accuracy: 0.9592 - top-5-accuracy: 0.9997 - val_loss: 0.4411 - val_accuracy: 0.8603 - val_top-5-accuracy: 0.9926
Epoch 50/50
313/313 [==============================] - ETA: 0s - loss: 0.1828 - accuracy: 0.9447 - top-5-accuracy: 0.9995
313/313 [==============================] - 8s 25ms/step - loss: 0.1828 - accuracy: 0.9447 - top-5-accuracy: 0.9995 - val_loss: 0.4614 - val_accuracy: 0.8480 - val_top-5-accuracy: 0.9920
79/79 [==============================] - 1s 8ms/step - loss: 0.4696 - accuracy: 0.8459 - top-5-accuracy: 0.9921
Loss: 0.47
Top 1 test accuracy: 84.59%
Top 5 test accuracy: 99.21%
在这里,我们使用训练好的模型来绘制注意力图。
def plot_attention(image):
"""Plots the attention map on top of the image.
Args:
image: A numpy image of arbitrary size.
"""
# Resize the image to a (32, 32) dim.
image = ops.image.resize(image, (32, 32))
image = image[np.newaxis, ...]
test_augmented_images = patch_conv_net.preprocessing_model(image)
# Pass through the stem.
test_x = patch_conv_net.stem(test_augmented_images)
# Pass through the trunk.
test_x = patch_conv_net.trunk(test_x)
# Pass through the attention pooling block.
_, test_viz_weights = patch_conv_net.attention_pooling(test_x)
test_viz_weights = test_viz_weights[np.newaxis, ...]
# Reshape the vizualization weights.
num_patches = ops.shape(test_viz_weights)[-1]
height = width = int(math.sqrt(num_patches))
test_viz_weights = layers.Reshape((height, width))(test_viz_weights)
selected_image = test_augmented_images[0]
selected_weight = test_viz_weights[0]
# Plot the images.
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
ax[0].imshow(selected_image)
ax[0].set_title(f"Original")
ax[0].axis("off")
img = ax[1].imshow(selected_image)
ax[1].imshow(selected_weight, cmap="inferno", alpha=0.6, extent=img.get_extent())
ax[1].set_title(f"Attended")
ax[1].axis("off")
plt.axis("off")
plt.show()
plt.close()
url = "http://farm9.staticflickr.com/8017/7140384795_385b1f48df_z.jpg"
image_name = keras.utils.get_file(fname="image.jpg", origin=url)
image = keras.utils.load_img(image_name)
image = keras.utils.img_to_array(image)
plot_attention(image)
对应于可训练的 CLASS
token 和图像补丁的注意力图有助于解释分类决策。还应注意,注意力图会逐渐变好。在初始训练阶段,注意力分散在各处,而在后期,注意力会更集中于图像中的对象。
非金字塔形卷积网络达到了约 84-85% 的 top-1 测试准确率。
感谢 JarvisLabs.ai 为本项目提供 GPU 积分。