Keras 3 API 文档 / 层 API / 重塑层 / Cropping3D 层

Cropping3D 层

[来源]

Cropping3D

keras.layers.Cropping3D(
    cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)

用于 3D 数据(例如空间或时空数据)的裁剪层。

示例

>>> input_shape = (2, 28, 28, 10, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
>>> y.shape
(2, 24, 20, 6, 3)

参数

  • cropping: 整数,或 3 个整数的元组,或 3 个包含 2 个整数的元组的元组。
    • 如果为整数:相同的对称裁剪应用于深度、高度和宽度。
    • 如果为 3 个整数的元组:解释为深度、高度和宽度的三个不同的对称裁剪值:(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)
    • 如果为 3 个包含 2 个整数的元组的元组:解释为 ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop))
  • data_format: 字符串,可以是 "channels_last"(默认)或 "channels_first"。输入中维度的顺序。"channels_last" 对应于形状为 (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels) 的输入,而 "channels_first" 对应于形状为 (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3) 的输入。如果未指定,则使用在您的 Keras 配置文件 ~/.keras/keras.json(如果存在)中找到的 image_data_format 值。默认为 "channels_last"

输入形状

5D 张量,形状为:- 如果 data_format"channels_last"(batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, channels) - 如果 data_format"channels_first"(batch_size, channels, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)

输出形状

5D 张量,形状为:- 如果 data_format"channels_last"(batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, channels) - 如果 data_format"channels_first"(batch_size, channels, first_cropped_axis, second_cropped_axis, third_cropped_axis)