GlobalAveragePooling1D
类tf_keras.layers.GlobalAveragePooling1D(data_format="channels_last", **kwargs)
用于时间序列数据的全局平均池化操作。
示例
>>> input_shape = (2, 3, 4)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.GlobalAveragePooling1D()(x)
>>> print(y.shape)
(2, 4)
参数
channels_last
(默认)或 channels_first
。输入数据的维度顺序。channels_last
对应于形状为 (batch, steps, features)
的输入,而 channels_first
对应于形状为 (batch, features, steps)
的输入。keepdims
为 False
(默认),则张量的秩将针对空间维度降低。如果 keepdims
为 True
,则时间维度将保留,长度为 1。行为与 tf.reduce_mean
或 np.mean
相同。调用参数
(batch_size, steps)
的二元张量,指示是否应该屏蔽(从平均值中排除)给定的步骤。输入形状
data_format='channels_last'
: 3D 张量,形状为:(batch_size, steps, features)
data_format='channels_first'
: 3D 张量,形状为:(batch_size, features, steps)
输出形状
keepdims
=False: 2D 张量,形状为 (batch_size, features)
。keepdims
=Truedata_format='channels_last'
: 3D 张量,形状为 (batch_size, 1, features)
data_format='channels_first'
: 3D 张量,形状为 (batch_size, features, 1)