LambdaCallback
类tf_keras.callbacks.LambdaCallback(
on_epoch_begin=None,
on_epoch_end=None,
on_batch_begin=None,
on_batch_end=None,
on_train_begin=None,
on_train_end=None,
**kwargs
)
用于动态创建简单自定义回调的回调函数。
此回调函数使用匿名函数构建,这些函数将在适当的时间(在 Model.{fit | evaluate | predict}
期间)被调用。 请注意,回调函数需要位置参数,如下所示:
on_epoch_begin
和 on_epoch_end
需要两个位置参数:epoch
、logs
on_batch_begin
和 on_batch_end
需要两个位置参数:batch
、logs
on_train_begin
和 on_train_end
需要一个位置参数:logs
参数
示例
# Print the batch number at the beginning of every batch.
batch_print_callback = LambdaCallback(
on_batch_begin=lambda batch,logs: print(batch))
# Stream the epoch loss to a file in JSON format. The file content
# is not well-formed JSON but rather has a JSON object per line.
import json
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
# Terminate some processes after having finished model training.
processes = ...
cleanup_callback = LambdaCallback(
on_train_end=lambda logs: [
p.terminate() for p in processes if p.is_alive()])
model.fit(...,
callbacks=[batch_print_callback,
json_logging_callback,
cleanup_callback])